Type something to search...

Blog Posts

生成式人工智能与社交媒体

生成式人工智能与社交媒体

不明显的出路 在我们新的人工智能世界中,最大的恐惧之一是我们会失去人性。社交媒体将完全失去社交的方面。我想这会使其变成“媒体”。 主要的担忧是,人工智能将生成社交媒体帖子,然后其他人会使用人工智能进行回复。这将创造一种垃圾内容循环,慢慢将真实的人类推开。 ![](https://wsrv.nl/?url=https://cdn-images-1.readmedium.com

阅读更多
使用 LLM 执行分析查询

使用 LLM 执行分析查询

实用方法:使用 LLM 进行数据探索与分析 考虑以下场景。您有一个包含 500 万行和 20 列的 CSV 文件。该 CSV 文件包含客户的交易记录,例如销售日期、单价、数量、客户姓名、地址等。基于这些数据,您希望 LLM 能帮助回答以下问题:客户 A 在某一天购买了什么? 某个月的总销售额是多少? 列出某一年每个月的销售额。LLM的局限性 如果你尝

阅读更多
文档智能的多代理革命:Sema4.ai 的

文档智能的多代理革命:Sema4.ai 的

本文由 Sunil Govindan 共同撰写,他对 AI 驱动的文档处理提供了见解和专业知识。Sema4.ai 文档智能多代理系统 自去年年底将文档智能(DI)作为 Sema4.ai 企业代理平台的一部分推出以来,我们看到企业对转变其以文档为中心的工作流程产生了极大的兴趣。从数小时到数秒。从手动

阅读更多
释放人工智能的潜能:思维链提示的力量

释放人工智能的潜能:思维链提示的力量

像人类一样思考的AI 你是否曾对ChatGPT能够迅速回应感到惊讶,但又对其回答有时显得肤浅或不完整感到失望?你可能会得到一个完美的事实或快速的解决方案,但你会想知道——它是如何得出这个结论的? 这就是**思维链提示(CoT)**的用武之地。 想象一下你正在解决一个数学问题。你不会只是喊出一个答案——你会一步一步地进行推理。CoT对AI的工作方式也是如此。它教会像Cha

阅读更多
如何开发具有自动互联网搜索功能的免费人工智能代理

如何开发具有自动互联网搜索功能的免费人工智能代理

使用 Groq 的免费 API 和 LangGraph 开发一个 AI 代理,以回答用户的问题并根据问题自动调用互联网搜索 如果您不是 Medium 会员,您可以通过此链接阅读完整故事。 生成性人工智能中的代理 AI 方法正在取得进展,并发现多个潜在应用。AI 代理就像数字助手,可以代表用户执行多项任务。它们可以理解用户的问题、整体目标,推理并决定选择最佳行动,并相互沟通

阅读更多
LangGraph 系统检查员:用于测试和验证 LangGraph 代理的人工智能代理

LangGraph 系统检查员:用于测试和验证 LangGraph 代理的人工智能代理

🔗 探索完整的系统检查器代码教程 — 深入代码,学习如何自己实现这个前沿的 AI 代理! 🤔 为什么您应该关注 AI 测试 想象一下,使用 AI 助

阅读更多
多模态人工智能助手:结合本地模型和云模型

多模态人工智能助手:结合本地模型和云模型

使用 LangGraph、mlx 和 Florence2 构建一个能够回答复杂图像问题的智能体,支持本地运行。 *在本文中,我们将结合 LangGraph 和多个专业模型,构建一个基础的智能体,能够回答有关图像的复杂问题,包括图像描述、边界框和 OCR。最初的想法是仅使用本地模型构建,但经过一些迭代后,我决定添加对基于云的模型(即 GPT4o-mini)的连接,以获得更可靠的

阅读更多
使用 Python 构建您自己的个性化健身 RAG 代理!

使用 Python 构建您自己的个性化健身 RAG 代理!

AI代理 | RAG代理 | Python | DSPy | 健身代理 | 初学者友好 完整且适合初学者的指南:使用 Python 构建您完全个性化的健身 RAG 代理***还不是会员?请随时访问完整文章 [这里](https://readmedium.com/69fe37b803f6?source=friends_link&sk=13d4674246ba

阅读更多
打造你的专属AI API!深入浅出Spring Boot与Google Gemini的完美融合!

打造你的专属AI API!深入浅出Spring Boot与Google Gemini的完美融合!

创建一个智能网络服务,利用生成式 AI 的力量回答问题 在本教程中,我们将整合 Spring Boot 和 Spring AI/Gen AI,构建一个利用 Google’s Gemini 生成式 AI 模型的网络服务。我们的目标是创建一个简单的网络服务,能够基于生成式 AI 的能力智能地回答用户问题。借助 Gemini 的强大功能,我们可以利用尖端 AI 提

阅读更多
惊人进化!用Gemini 2.0与LangGraph构建您的多工具自主代理!

惊人进化!用Gemini 2.0与LangGraph构建您的多工具自主代理!

一个实用的教程,包含完整代码示例,用于构建和运行多工具代理 大型语言模型(LLMs)非常出色——它们可以记忆大量信息,回答常识性问题,编写代码,生成故事,甚至修正你的语法。然而,它们并非没有局限性。它们会幻觉,知识截止日期可能从几个月到几年不等,并且仅限于生成文本,无法与现实世界互动。这限制了它们的实用性,尤其是在需要实时数据、来源引用或超出文本生成功能的任务中。这

阅读更多
构建惊艳的文本分析管道!LangGraph的奇妙能力揭秘!

构建惊艳的文本分析管道!LangGraph的奇妙能力揭秘!

在本文中,我将向您介绍 LangGraph,这是一个用于构建基于图的工作流的应用程序的令人难以置信的框架,这些工作流在其他情况下将是不可行的。我将分享我对 LangGraph 的经验,它的重要特性,并最终创建一个文本分析管道,以展示 LangGraph 的能力。 理解 LangGraph 本质上,LangGraph 是围绕图形工作流程的概念构建的,其中每个节点作为特定的过程或

阅读更多
利用模态微调 LLaMA-3 实现文本到 SQL 的生成:综合指南

利用模态微调 LLaMA-3 实现文本到 SQL 的生成:综合指南

微调大型语言模型(LLMs)传统上是一项复杂的工作,需要大量的基础设施设置和管理。然而,借助Modal的云平台和Axolotl的微调框架,您现在可以直接从本地机器对强大的模型如LLaMA-3进行微调,而无需处理基础设施的复杂性。 在本指南中,我们将通过使用Modal的远程GPU功能和Axolotl的先进训练优化,逐步演示如何对LLaMA-3 8B进行SQL查询生成的微调。 ![](htt

阅读更多
能将 Docker 容器大小减少 80% 的人工智能工具

能将 Docker 容器大小减少 80% 的人工智能工具

如何通过 Docker Shrink 优化容器并节省时间和金钱 在容器化应用主导的现代范式中,有效处理 Docker 容器是开发人员和组织面临的主要问题之一。这导致了大型 Docker 镜像,从而造成更高的存储费用、较长的构建时间以及生产环境中的其他问题。 Docker Shrink 是解决这些问题的新方案,它是一个创新工具,利用人工智能来解决这些问题。作为一个亲身经历过大型 D

阅读更多
用于情感分类的传统人工智能与生成式人工智能

用于情感分类的传统人工智能与生成式人工智能

5种文本分类的方法(即使没有训练数据) 介绍 本文重点讨论来自Flipkart客户评论数据集的产品评论情感分析。 情感分析是自然语言处理(NLP)中的一项关键任务,

阅读更多
利用来自 Hugging Face 的 SmolAgents 库构建多代理供应链模拟

利用来自 Hugging Face 的 SmolAgents 库构建多代理供应链模拟

“smolagents — 一个构建优秀智能体的小型库” 供应链管理是一个复杂的领域,其中多个实体需要有效协调,以便将产品交付给最终消费者。现代供应链是一个复杂的网络,涉及供应商、制造商、分销商和零售商。对这些网络的仿真可以帮助我们理解瓶颈、优化操作并提高效率。 在本

阅读更多
Tags