Type something to search...

Blog Posts

本地探索 Swarm 多智能体框架

本地探索 Swarm 多智能体框架

Swarm 是一个实验性样本框架,用于模拟轻量级多智能体框架,旨在教育目的。通常它与 Open AI Key 一起使用,但我们可以更改为使用本地的 Ol

阅读更多
使用 GPT Vision 和 Langchain 从图像生成结构化数据

使用 GPT Vision 和 Langchain 从图像生成结构化数据

在当今这个视觉数据丰富的世界中,从图像中提取有意义信息的能力变得越来越重要。Langchain是一个强大的框架,用于构建大型语言模型(LLMs)应用程序,提供了一套多功能的工具来应对这一挑战。在本文中,我们将探讨如何使用Langchain从图像中提取结构化信息,例如计算人数和列出主要物体。 在深入代码之前,让我们先了解一下任务的背景。想象一下你有一张场景的图像,比如城市街道。你的目标是

阅读更多
如何在本地运行 Nvidia 的 llama-3.1-nemotron-70b-instruct

如何在本地运行 Nvidia 的 llama-3.1-nemotron-70b-instruct

在开发者、研究人员和 AI 爱好者中,本地运行大型语言模型(LLMs)变得越来越受欢迎。其中一个引起广泛关注的模型是 llama-3.1-nemotron-70b-instruct,这是 NVIDIA 定制的强大 LLM,旨在增强生成响应的有用性。在本综合指南中,我们将探讨多种方法,以便在您的本地机器上运行此模型,首先介绍用户友好的 Ollama 平台。在开始之前,如果您正在寻找一个

阅读更多
解锁 LLM 量化的 5 个关键点

解锁 LLM 量化的 5 个关键点

大型语言模型的量化 LLM量化目前是一个热门话题,因为它在提高大型语言模型(LLMs)的效率和在各种硬件平台(包括消费级设备)上部署方面发挥着至关重要的作用。 通过调整模型中某些组件的精度,量化显著减少了模型的内存占用,同时保持相似的性能水平。 在本指南中,我们将探讨LLM量化的五个关键方面,包括将此技术应用于我们模型的一些实用步骤。 #1. 理解量化 量

阅读更多
LangGraph、LangChain、LangFlow、LangSmith:使用哪一个以及为什么?

LangGraph、LangChain、LangFlow、LangSmith:使用哪一个以及为什么?

探索 LangGraph、LangChain、LangFlow 和 LangSmith 之间的关键区别,了解哪种框架最适合您的语言模型应用——从工作流构建到性能监控。 👨🏾‍💻 GitHub ⭐️ | 👔LinkedIn

阅读更多
RAG/LLM 和 PDF:使用 PyMuPDF 转换为 Markdown 文本

RAG/LLM 和 PDF:使用 PyMuPDF 转换为 Markdown 文本

以Markdown文本格式输入数据可以提高生成文本的质量 介绍 在大型语言模型(LLMs)和检索增强生成(RAG)环境中,以markdown文本格式输入数据具有重要意义。以下是一些详细考虑因素。 LLMs 是强大的语言模型,可以生成连贯且具有上下文相关性的文本。然而,它们有时可能会产生缺乏事实准确性或上下文的响应。通过结合基于检

阅读更多
RBYF:Qwen2.5–3B-instruct 非常棒。

RBYF:Qwen2.5–3B-instruct 非常棒。

修订基准:以您为反馈的全新3B模型来自阿里巴巴Qwen,是个令人惊叹的模型,我可以证明这一点! 涌现属性的错觉在很大程度上是评估这些模型所使用的指标的产物。这是一个事实。 几周前,我决定做一个小反叛,放弃所有官方基准,开始自己做基准测试! 这就是这个完全虚构的首字母缩略词RBYF的意义:以您为反馈的修订基准。其基本原则是,没有比您更好的评判者来验证一个大型语言模型的优劣。 老

阅读更多
6 种最佳本地运行模型的 LLM 工具

6 种最佳本地运行模型的 LLM 工具

运行大型语言模型(LLMs)如 ChatGPT 和 Claude 通常涉及将数据发送到由 OpenAI 和其他 AI 模型提供商管理的服务器。虽然这些服务是安全的,但一些企业更倾向于将其数据完全离线,以获得更高的隐私保护。 本文

阅读更多
Tags