Type something to search...

Blog Posts

Crawl4AI:您的终极异步网络爬行伴侣 🕷️🤖

Crawl4AI:您的终极异步网络爬行伴侣 🕷️🤖

Crawl4AI 是一个 开源 Python 库,旨在简化网络爬虫并轻松提取网页上的有价值信息。无论您是将其集成作为 REST API,还是直接在您的 Python 项目中使用,Crawl4AI 都提供了一种 强大、灵活 和 完全异步 的解决方案,专为大型语言模型(LLMs)和人工智能应用量身定制。 介绍 Crawl4AI 旨在 **简化

阅读更多
使用 GPT-4o 创建 WhatsApp 人工智能代理

使用 GPT-4o 创建 WhatsApp 人工智能代理

如何使用 Meta API 构建您自己的 LLM 驱动的 Whatsapp 聊天机器人 在人工智能和商业管理领域,AI 代理与广泛使用的通信工具的整合是一个颠覆性的变化。想象一下,您可以通过 WhatsApp 直接与您业务的管理或个人助手 AI 进行实时数据请求、更新和任务自动化,这一切都通过熟悉的聊天界面实现。 在我们关于创建 AI 驱动的业务管理器系列的第三部分中,我将引

阅读更多
使用 Google 双子座 2.0 轻松进行网络抓取

使用 Google 双子座 2.0 轻松进行网络抓取

网页抓取从未如此简单,这都要感谢谷歌开创性的多模态实时 API——Gemini 2.0\。 使用这个工具,您可以轻松地从任何网页中提取数据,无论是复杂的、非结构化的,还是某些非常特定的数据。 今天,我将逐步带您体验我自己尝试过的实际示例,这样您就会确切知道该怎么做。 即使您是完全的初学者,您也会在短时间内感觉像个专业人士。 让我们开始吧! 入门:设置 Google AI

阅读更多
未来工程:数据、软件和人工智能的共同点

未来工程:数据、软件和人工智能的共同点

识别跨学科共性不仅增强招聘策略,还支持灵活的IT架构。 我注意到IT部门中存在过度专业化的趋势。然而,多年来我学到的一个重要教训是这种孤立专业化的负面影响。 虽然这主要是一个组织问题,但对供应商专业平台产品的盲目追求也[导致了我们企

阅读更多
从帖子到报告:利用 LLM 进行社交媒体数据挖掘

从帖子到报告:利用 LLM 进行社交媒体数据挖掘

如何指导LLMs过滤餐厅帖子并提取对业务增长至关重要的见解。 应用概述 我们正处于自动化的黄金时代,这得益于大型语言模型(LLMs)的崛起。从改变行业到解锁无尽的应用,LLMs彻底改变了我们与数据的互动方式,主要通过自然语言。 在本文中,我将向您展示如何指示LLM穿透社交媒体的噪音,提取最重要的信息。具体来说,我们将深入探讨如何挖掘Instagram上的餐厅帖子,以

阅读更多
Gemini 2.0 Flash + 本地多模式 RAG + 上下文感知 Python 项目:文档的简易人工智能/聊天

Gemini 2.0 Flash + 本地多模式 RAG + 上下文感知 Python 项目:文档的简易人工智能/聊天

在这个视频中,我将展示一个超级快速的教程,教你如何创建一个本地多模态 RAG、Gemini 2.0 Flash 和上下文感知响应,以便为你的业务或个人使用打造一个强大的代理聊天机器人——一个不需要强大笔记本电脑的聊天机器人。 年末时,大模型产品之间的竞争再次加剧。在我上一个视频中,我介绍了 LLama3.3\。 在12月11日,谷歌发布了 **Gemini 2.0 Flash。

阅读更多
GenAI Studio:构建、管理和分析用于 POC 和生产的生成式人工智能用例

GenAI Studio:构建、管理和分析用于 POC 和生产的生成式人工智能用例

您构建和管理生成式 AI 解决方案的中心 什么让 Gen AI Studio 令人兴奋? 生成式 AI 正在重新塑造我们对问题解决、创造力和效率的思考。然而,构建 AI 解决方案可能会因为技术复杂性而让人感到畏惧。Gen AI Studio 弥补了这一差距——让您能够创建、完善和分析 AI 用例,而不必被编码的复杂性所困扰。 **Gen AI Studio 的主要

阅读更多
构建 Agentic RAG(检索-增强生成)管道的实践演示

构建 Agentic RAG(检索-增强生成)管道的实践演示

插图展示了自主代理如何参与 RAG 系统,以检索最相关的信息片段。 什么是Agentic RAG? 我们都知道什么是检索增强生成(Retrieval Augmented Generation,RAG)。但让我们快速回顾一下。检索增强生成是一种强大且流行的管道,通过从大型语言模型中增强响应来提升其表现。它通过将从向量数据库中检索到的相关数据作为上下文添加到提示中,并将其发送给LLM进

阅读更多
我如何利用 ChromaDB 和 Chainlit 构建基于 Graph-RAG 系统的 LLM 应用程序

我如何利用 ChromaDB 和 Chainlit 构建基于 Graph-RAG 系统的 LLM 应用程序

一个端到端的应用,带有 GUI,并且仅用 3 个脚本将新知识存储在向量数据库中 大型语言模型(LLMs)和知识图谱是处理自然语言的宝贵工具。检索增强生成(RAG)作为一种强大的方法,能够通过上下文知识增强 LLM 的响应。上下文知识通常嵌入并存储在向量数据库中,用于创建上下文以增强提示。然而,这种方式下,知识被映射在一个概念空间中,但并没有真正组织起来。知识图谱捕捉了领域内数据点或实体

阅读更多
我如何修复提示,让人工智能每次都能做出无懈可击的回应

我如何修复提示,让人工智能每次都能做出无懈可击的回应

当ChatGPT首次推出时,几乎每个行业和职业的提示模板都涌入了互联网。你可能见过类似“最佳[N] ChatGPT提示用于[行业/职业]”的帖子。 这些帖子帮助许多人接触到AI工具,使得提问和获得答案变得简单。然而,现在我们中的大多数人已经掌握了这一点,并希望进一步推进。简单的提示会导致简单的结果,因此我们开始撰写更详细和复杂的提示。 然而,这也带来了挑战:有时,“AI”根本

阅读更多
如何利用实时事件处理打造主动式代理

如何利用实时事件处理打造主动式代理

发现如何将流媒体数据库与大型语言模型结合起来,创建在您甚至未询问之前就能采取行动的智能代理。 由大型语言模型(LLMs)驱动的问答代理,如ChatGPT,已经成为我们日常生活中不可或缺的一部分,帮助我们解决各种问题——无论是编写代码、撰写论文还是回复电子邮件。但是,所有这些“神奇”的能力都有一个关键要求:我们必须向LLM提供高质量、精确描述的问题。 那么,是否有可能创建一个能

阅读更多
如何使用 CrewAI 和 Langchain 构建代理 RAG

如何使用 CrewAI 和 Langchain 构建代理 RAG

在快速发展的 AI 领域,提供准确、上下文感知的用户查询响应能力是一个游戏改变者。检索增强生成(RAG)作为一种强大的范式,结合了从外部来源检索相关信息与大型语言模型(LLMs)的生成能力。然而,随着查询变得越来越复杂和多样化,静态 RAG 设置可能并不总是足够。这就是 Agentic RAG 发挥作用的地方。 Agentic RAG 引入了一个智能的模块化框架,其中专门的代理协同

阅读更多
如何使用人工智能免费抓取和分析数据:从收集到洞察

如何使用人工智能免费抓取和分析数据:从收集到洞察

学习如何结合网络爬虫、代理和人工智能语言模型来自动化数据提取,轻松获得可操作的洞察。 虽然有些网站可以通过使用Selenium、Puppeteer等工具轻松抓取,但其他实施了先进安全措施的网站,如验证码和IP封禁,可能会变得困难。为了克服这些挑战,并确保您可以免费抓取99%的网站,您将在本文中构建一个集成[代理工具](https://get.brightdata.com/bd-

阅读更多
如何了解人工智能的最新趋势(无需花大量时间上网)

如何了解人工智能的最新趋势(无需花大量时间上网)

如今,跟上人工智能(AI)趋势的感觉有点像试图从消防栓中小口喝水——只不过消防栓喷出的却是机器生成的术语、研究论文和未来预测,以超音速的速度涌出。但别担心,亲爱的朋友!保持对AI的了解并不一定要像全职工作一样。通过一些巧妙的策略,你可以在不牺牲空闲时间(或理智)的情况下走在前沿。让我们以隐喻、幽默和高效的方式来解析一下。 1. 订阅精选新闻通讯:你的AI备忘单 把新闻通讯想象

阅读更多
如何使用 Google DeepMind Gemini 2.0 Flash Live API 进行实时对话

如何使用 Google DeepMind Gemini 2.0 Flash Live API 进行实时对话

Google DeepMind 的 Gemini 2.0 Flash API 代表了实时 AI 驱动对话领域的重大突破。它使开发者能够构建能够无缝处理实时音频交互的应用程序,提供了语音输入和输出的无与伦比的集成。无论您是在创建客户服务聊天机器人、增强无障碍工具,还是开发互动 AI 导师,这个 API 都是一个强大的基础。在本博客中,我们将探讨 Gemini 2.0 Flash API

阅读更多
Tags