Type something to search...

Llms

开发人员 2025 年人工智能入门路线图

开发人员 2025 年人工智能入门路线图

在我上一篇文章中,我写了关于初学者学习 AI 的路径,试图揭开其工具和日常任务应用的神秘面纱。 这次,我们将大幅度转向。 想象一下,完全独立构建、部署甚至货币化 SaaS 应用程序,但你不知道从哪里开始。本文主要面向寻找指南或课程的初级开发者,将介绍一些关键概念、工具和策略,帮助你入门。 和往常一样,我将文章组织成几个大类别和主题,这些内容并不需要按顺序阅读,所以如果你已经熟悉某些

阅读更多
Cline v3.1:Cursor 和 Windsurf 的高性价比替代品

Cline v3.1:Cursor 和 Windsurf 的高性价比替代品

如果你在寻找一种可以替代像 Cursor 或 Windsurf 这样的 AI 编码器的工具,因为它们价格昂贵且需要下载软件。 那么在这篇文章中,让我们讨论一些可能解决我们问题的东西。 我说的是…… Cline v3.1 这不仅仅是另一个工具;它是一个改变游戏规则的工具,将 Visual Studio Code (VS Code) 转变为一个完全自主的 AI 编码代理——免费!

阅读更多
为结构化和非结构化数据构建图形 RAG。

为结构化和非结构化数据构建图形 RAG。

RAG 架构迄今为止是解决 LLM 缺乏上下文化的最适应和复杂的解决方案。通过 RAG,几乎不需要微调,就在很大程度上解决了使用未训练知识库的 LLM 所面临的问题。 尽管向量 RAG 可以建立上下文化,但其能力是有限的。在复杂的关系和高度互联的数据中,向量 RAG 的召回率并不令人印象深刻。其主要原因之一是构成知识库的简单向量嵌入,仅考虑几何接近性。 另一方面,图形天生结构化,以捕

阅读更多
使用 Autogen 进行代理人工智能金融分析:比特币和特斯拉哪个更好?

使用 Autogen 进行代理人工智能金融分析:比特币和特斯拉哪个更好?

你是否曾经想过,NVidia 和特斯拉,哪个投资更好?但是如果你懒得自己去分析,或者甚至不知道该如何开始呢? 这是个严肃的问题,我知道。如果我们能让 ChatGPT 来完成这个任务,那该多好,但如果你已经尝试过——你就知道它并不擅长这方面。你可以让它制定计划,但让它在多个步骤中坚持执行就很难。而且它在会计方面也不太擅长,所以分析财务数据并不是它的强项。有没有办法解决这个问题,还是说没有

阅读更多
Swark 简介:从代码自动生成架构图

Swark 简介:从代码自动生成架构图

软件架构很难做到正确。团队之间的脱节、不清晰的图表以及耗时的流程常常导致挫折和次优的设计决策。随着工程团队采用去中心化的协作架构方法,风险变得更高。 在我之前的文章 “软件架构很难” 中,我深入探讨了这些挑战,强调了困扰许多团队的沟通和图表标准中的关

阅读更多
HuggingFace smolagents:迄今为止最好的多代理框架?

HuggingFace smolagents:迄今为止最好的多代理框架?

比较 Autogen、Langraph、CrewAI、Magentic-One 等 正如你在多个地方所读到的,2025 年是 AI Agents 的年份。马克·扎克伯格甚至公开表示,Meta 将会有中高级工程师担任 AI Agents。 从过去几次发布中可以清楚看出,微软现在拥有 3 个多智能体编排框架(AutoGen、Magentic-One、Tiny-Troupe),Op

阅读更多
英伟达即将让人工智能模型的价格崩溃

英伟达即将让人工智能模型的价格崩溃

在CES上,Nvidia展示了一些有趣的新产品。其中最大的一件是Jensen Huang的新皮夹克。我是说,看看那件:这是技术发布会还是时装秀? 老实说,我有点惊讶更多人没有对此发表评论。这是Jensen迄今为止最好的皮夹克。 还有其他一些东西。新的RTX 50系列。令人惊讶的是,关于它们的报道绝大多数都是积极的。我特别喜欢Linus Tech Tips视频中的这条评论: ![](

阅读更多
使用 LLM 执行分析查询

使用 LLM 执行分析查询

实用方法:使用 LLM 进行数据探索与分析 考虑以下场景。您有一个包含 500 万行和 20 列的 CSV 文件。该 CSV 文件包含客户的交易记录,例如销售日期、单价、数量、客户姓名、地址等。基于这些数据,您希望 LLM 能帮助回答以下问题:客户 A 在某一天购买了什么? 某个月的总销售额是多少? 列出某一年每个月的销售额。LLM的局限性 如果你尝

阅读更多
惊人进化!用Gemini 2.0与LangGraph构建您的多工具自主代理!

惊人进化!用Gemini 2.0与LangGraph构建您的多工具自主代理!

一个实用的教程,包含完整代码示例,用于构建和运行多工具代理 大型语言模型(LLMs)非常出色——它们可以记忆大量信息,回答常识性问题,编写代码,生成故事,甚至修正你的语法。然而,它们并非没有局限性。它们会幻觉,知识截止日期可能从几个月到几年不等,并且仅限于生成文本,无法与现实世界互动。这限制了它们的实用性,尤其是在需要实时数据、来源引用或超出文本生成功能的任务中。这

阅读更多
云端实验室!如何用云虚拟机试验开源LLM,节省上万刀?

云端实验室!如何用云虚拟机试验开源LLM,节省上万刀?

考虑购买 Mac Mini 或 Mac Pro 来使用开源 LLM 吗?云虚拟机让您可以测试、决策并节省开支。 您是否考虑投资 Mac Mini 或 Mac Pro 来实验开源大型语言模型 (LLM)?在做出重大投资之前,有一种更聪明的方式来测试您的需求:云虚拟机。 从 API 到本地 LLM 的旅程 像许多开发者一样,我的 AI 旅程始于 ChatGPT 和 OpenAI

阅读更多
精细调优大语言模型:揭开HuggingFace的神秘面纱!如何克服GPU内存束缚?

精细调优大语言模型:揭开HuggingFace的神秘面纱!如何克服GPU内存束缚?

每次大型语言模型 (LLMs) 的新公告往往将性能推向新的高度,常常超越之前的基准(例如,巨量多任务语言理解或 MMLU)。这一进展激发了许多应用程序的出现,利用最大的和最优秀的模型。在我们之前的帖子中,我们讨论了 LLMs 的规模法则,并解释

阅读更多
2025 年最著名的 21 个 RAG 框架

2025 年最著名的 21 个 RAG 框架

通过高级检索增强生成技术革新人工智能 披露:我使用GPT搜索。整篇文章仍由我草拟。我的写作风格倾向于自信和分析性,相比之前的文章,不依赖于ChatGPT辅助写作。感谢您与我一起参与这段旅程,我希望在未来几年继续为您提供价值!通过支持我来提供建议。 截至2025年1月4日, 免责声明:[类似](https://sebastian-petrus.medium.

阅读更多
我将区块链和人工智能结合起来创造艺术。接下来发生了什么?

我将区块链和人工智能结合起来创造艺术。接下来发生了什么?

教程 使用 LLM 创建数据的艺术表现 观察彩虹 如果可以通过图像来可视化,区块链会是什么样子? 区块链是分布式账本的技术实现,最常与金融交易相关联。这远不是我们可能认为的美丽的东西。尤其是因为存储在区块链上的数据大多由复杂的数字、字母和与价值、发送者和接收者地址(钱包)以及元数据相关的符号组成。 然而,我之前曾致力于*

阅读更多
2025年冲击AI领域!6个月掌握LLM的必经之路!

2025年冲击AI领域!6个月掌握LLM的必经之路!

作为一名从电子工程背景转型为专注于大型语言模型(LLMs)和生成式AI的数据科学家,我理解进入AI领域的挑战与兴奋。到2025年,行业格局与我开始旅程时有了显著变化。让我分享一个实用的学习路径,无论您是全新起步还是从其他领域转型。结合我自身的经历和行业经验,我将重点介绍在当今AI领域中最重要的技能和知识。 为什么在2025年关注大型语言模型(LLMs)? 当我开始转向人工智能领域时

阅读更多
将数据转化为解决方案:使用 Python 和人工智能构建智能应用程序

将数据转化为解决方案:使用 Python 和人工智能构建智能应用程序

一些金融分析师担心人工智能可能无法证明在该领域进行的大规模投资的合理性。虽然我理解他们的担忧,但我的看法有所不同。我既不是AI的乐观派,也不是悲观派——我相信AI有潜力推动创新、提升生产力,并带来可衡量的商业成果。 在我上一篇文章中,我探讨了大型语言模型(LLMs)如何用于结构化非结构化数据。这一次,我想更进一步:展示使用LLMs进行数据结构化的结果如何作为构建智能应用的基础。从而

阅读更多
微软开放源代码 MarkItDown:改变游戏规则的文件到文本转换库 🌐📊📚

微软开放源代码 MarkItDown:改变游戏规则的文件到文本转换库 🌐📊📚

一个强大的开源工具,简化文件处理并自动提取PDF、Word文档、图像、音频等中的内容。 📏🎓📦专业人士在从PDF、Word文档、图像或音频文件中提取有意义的内容时常常面临挑战。在多个格式中管理分散的内容可能耗时且具有干扰性。MarkItDown通过自动化文件到文本的转换来解决这一挑战,节省了数小时的工作时间,并提供干净、结构化的输出。 🗑️📅📊 这个

阅读更多
通过多模态 LLM 模型进行图像推理

通过多模态 LLM 模型进行图像推理

多模态人工智能 | LLM | OPENAI | GEMINI | 视觉 本博客探讨了多模态模型在图像推断中的能力,强调它们整合视觉和文本信息以改善分析的能力 多模态人工智能的出现显著改变了数据处理的格局。在过去,我们在光学字符识别(OCR)等任务中严重依赖文本提取库,如 PyTesseract。然而,视觉变换器和其他多模态模型的进步彻底改变了我们处理和解释数

阅读更多
Llm 微调指南:您是否需要以及如何进行微调

Llm 微调指南:您是否需要以及如何进行微调

在使用LLM时,我们最常收到的问题之一就是关于微调。每第二位客户都会问他们是否应该对他们的模型进行额外的训练。 在大多数情况下,答案是否定的,他们不需要。现代LLM在许多商业应用中已经足够好,无需微调,比如帮助客户从花店订购鲜花的机器人。此外,他们没有数据来进行微调,而他们拥有的20个对话样本并不算数(200个也是如此)。 训练和微调模型是一项昂贵的工作,如果可以的话,你真的应该避免它,

阅读更多
具有大型语言模型(LLM)的多代理人工智能架构

具有大型语言模型(LLM)的多代理人工智能架构

端到端多智能体实现与LLMs 多智能体架构由多个自主智能体组成,它们协作以完成复杂任务。随着LLMs的最新进展,这种架构已获得显著的关注。 这些智能体能够独立做出决策并执行行动。智能体由大型语言模型(LLMs)驱动。 多智能体架构的工作方式是,你不必指定每一个步骤,我们可以给它们一个目标,它们可以自行确定行动顺序。 这些架构被广泛应用于机器人技术、虚拟助手、协作决策和多模态处

阅读更多
使用自动生成的 MCP 服务器的 C++ RESTful 网络服务与 LLM 连接

使用自动生成的 MCP 服务器的 C++ RESTful 网络服务与 LLM 连接

这是一个 5 分钟的教程,介绍如何将 MCP (Model Context Protocol) 服务器添加到您现有的 Oat++ 应用程序,以便 LLMs 可以查询您的 API。 前提条件 在开始之前,您需要一个使用 Oat

阅读更多
Claude与Neo4j的动态数据交互与模型上下文协议应用

Claude与Neo4j的动态数据交互与模型上下文协议应用

赋予 LLM 知识图谱的能力,使用 Anthropic 的模型上下文协议 上周,Anthropic 发布了一个新的 模型上下文协议 (MCP),使得像 Claude 这样的 LLM 能够与外部数据源进行通信。 该协议允许本地应用程序,如 Claude.ai、Zed、R

阅读更多
从帖子到报告:利用 LLM 进行社交媒体数据挖掘

从帖子到报告:利用 LLM 进行社交媒体数据挖掘

如何指导LLMs过滤餐厅帖子并提取对业务增长至关重要的见解。 应用概述 我们正处于自动化的黄金时代,这得益于大型语言模型(LLMs)的崛起。从改变行业到解锁无尽的应用,LLMs彻底改变了我们与数据的互动方式,主要通过自然语言。 在本文中,我将向您展示如何指示LLM穿透社交媒体的噪音,提取最重要的信息。具体来说,我们将深入探讨如何挖掘Instagram上的餐厅帖子,以

阅读更多
构建 Agentic RAG(检索-增强生成)管道的实践演示

构建 Agentic RAG(检索-增强生成)管道的实践演示

插图展示了自主代理如何参与 RAG 系统,以检索最相关的信息片段。 什么是Agentic RAG? 我们都知道什么是检索增强生成(Retrieval Augmented Generation,RAG)。但让我们快速回顾一下。检索增强生成是一种强大且流行的管道,通过从大型语言模型中增强响应来提升其表现。它通过将从向量数据库中检索到的相关数据作为上下文添加到提示中,并将其发送给LLM进

阅读更多
我如何修复提示,让人工智能每次都能做出无懈可击的回应

我如何修复提示,让人工智能每次都能做出无懈可击的回应

当ChatGPT首次推出时,几乎每个行业和职业的提示模板都涌入了互联网。你可能见过类似“最佳[N] ChatGPT提示用于[行业/职业]”的帖子。 这些帖子帮助许多人接触到AI工具,使得提问和获得答案变得简单。然而,现在我们中的大多数人已经掌握了这一点,并希望进一步推进。简单的提示会导致简单的结果,因此我们开始撰写更详细和复杂的提示。 然而,这也带来了挑战:有时,“AI”根本

阅读更多
如何利用实时事件处理打造主动式代理

如何利用实时事件处理打造主动式代理

发现如何将流媒体数据库与大型语言模型结合起来,创建在您甚至未询问之前就能采取行动的智能代理。 由大型语言模型(LLMs)驱动的问答代理,如ChatGPT,已经成为我们日常生活中不可或缺的一部分,帮助我们解决各种问题——无论是编写代码、撰写论文还是回复电子邮件。但是,所有这些“神奇”的能力都有一个关键要求:我们必须向LLM提供高质量、精确描述的问题。 那么,是否有可能创建一个能

阅读更多
MarkItDown:LLMs 项目必备的强大工具包,已通过 OpenAI 和 Gemini 2.0 测试

MarkItDown:LLMs 项目必备的强大工具包,已通过 OpenAI 和 Gemini 2.0 测试

MarkItDown 是微软开发的一款多功能工具,可以将各种文件格式转换为 Markdown,使其成为从事大型语言模型(LLMs)开发人员的必备工具。无论您想利用文档进行微调还是创建提示前言,这都是您不可或缺的工具。让我们看看如何在 OpenAI 和 Gemini 模型的实际应用中利用它。 核心能力 该 [toolkit](https://github.com/microso

阅读更多
AutoGen:智能自动化的代理开放源码框架

AutoGen:智能自动化的代理开放源码框架

AutoGen是微软提供的一个开源框架,用于构建能够通过对话模式协作完成任务的智能体。AutoGen简化了AI开发和研究,支持多种大型语言模型(LLMs)、集成工具和先进的多智能体设计模式。您可以在本地开发和测试智能体系统,然后根据需求将其部署到分布式云环境中。 该框架允许开发者通过多个智能体构建LLM应用,这些智能体可以相互对话以完成任务。AutoGen智能体是可定制的、可对话的,并

阅读更多
建立一个能写入 Google 文档的研究代理(第 1 部分)

建立一个能写入 Google 文档的研究代理(第 1 部分)

可能帮助您完成作业的工具 ***本文是两部分系列的第一部分,我们将使用 LangGraph 和 Tavily 构建一个简单的研究助手,该助手编写和完善短文。为了跟踪它生成的计划、文章和评论,我们添加了程序化创建和编辑 Google Docs 的功能。在本文中,我们将重点关注助手,将文档连接的内容留到第二篇文章。您可以在 [这里](https://github.com/rmart

阅读更多
LLM 代理:多代理自生聊天

LLM 代理:多代理自生聊天

代理是经过定制的语言模型,通过系统提示使其以特定方式行为。提示通常详细说明任务类型、预期的任务解决行为和约束条件。通常情况下,代理由人类用户调用,每次交互都需要进行调节。但是,当代理 LLM 与其他代理互动时会发生什么?当代理能够访问额外工具时,例如读取额外数据源或执行程序代码时,代理又会如何表现? 本文探讨了使用 Autogen 框架的多智能体对话。探讨了三个方面:首先,您将了解不同

阅读更多
从知识到行动:为什么特定领域的法律硕士需要代理人工智能?

从知识到行动:为什么特定领域的法律硕士需要代理人工智能?

在人工智能不断发展的领域中,有两股强大的力量正在塑造未来:领域特定的大型语言模型 (LLMs) 和 自主 AI。虽然它们各自带来了显著的能力,但当它们协同工作时,其真正潜力得以释放。这种协同作用将 AI 从一个被动的知识库转变为一个能够做出明智决策和采取自主行动的积极问题解决者。 在本文中,我们将探讨为什么单靠领域特定的 LLM 是不够的,并探讨将其与自主 AI 结合如

阅读更多
Google Gemini-Exp-1206:新的最佳法律硕士

Google Gemini-Exp-1206:新的最佳法律硕士

Beats GPT-4.0, OpenAI-o1, Claude3.5 Sonnet and Gemini 1.5 on LMArena 谷歌的 Gemini 在几个月前在生成式 AI 领域的首次亮相表现平平,但如今其发展速度相当快。现在,它发布了一个新的实验模型 Gemini-1206-Exp,该模型在 ChatArena 排行榜上超越了所有其他模型,从而在生成

阅读更多
利用 LangGraph 和代理优化工作流程效率:关键功能、用例和集成...

利用 LangGraph 和代理优化工作流程效率:关键功能、用例和集成...

在生成式 AI 和大型语言模型(LLMs)的背景下,agents 和 LangGraph 是增强 LLM 功能的工具和框架,使它们能够以更灵活和结构化的方式执行任务、做出决策或与复杂工作流程进行交互。以下是每个概念的详细说明及其应用示例。 什么是 LLM 中的代理? 代理是与 LLM 一起工作的自主程序或组件,能够根据提示和用户输入执行任务、做出决策或与环境互动

阅读更多
人类学的 MCP 将让你大开眼界

人类学的 MCP 将让你大开眼界

相信我,这不是点击诱饵,MCP将彻底改变AI交互的方式 AI技术正在快速发展。 你可能在等待最新的模型,如GPT-5、Gemini 2或Claude 4,但有一件重要的事情需要知道——今天AI的真正力量不仅仅在于拥有最新的模型。 而在于我们如何将这些AI模型与周围的世界连接起来。 在于给予它们正确的工具、数据和上下文,以帮助它们更好地理解。 这就是Anthropic的***模型上下

阅读更多
你准备好迎接人工智能的未来了吗?OpenAI 的 Swarm 可能会改变一切

你准备好迎接人工智能的未来了吗?OpenAI 的 Swarm 可能会改变一切

学习如何配置和个性化 OpenAI 的 Swarm 框架,以创建强大的、协作的多代理系统,满足您的独特需求并推动更智能的自动化 想象一个复杂问题不是由单一 AI 而是由一个团队的智能代理无缝协作解决的世界。OpenAI 的 Swarm 使这一愿景成为现实。它是一个开创性的框架,利用 LLM 的力量创建一个协作的系统,其中每个代理都有独特的角色。 无论是自动化耗时的工作流程、解决多

阅读更多
使用 LangGraph 框架以多代理方式实施复杂的 LLM 应用程序

使用 LangGraph 框架以多代理方式实施复杂的 LLM 应用程序

将LangGraph添加到您的GenAI相关技能库中。这项技能可以立即使您能够创建复杂的AI系统。当然,前提是您需要了解LangChain的使用方法。介绍 LangGraph 是一个强大的工具,旨在使用大型语言模型 (LLMs) 创建有状态的多参与者应用程序。通过扩展 LangChain 库的功能,LangGraph 使得多个链(或参与者)能够在各种计算步骤中以循环方式进

阅读更多
构建人工智能代理,实现企业级软件开发自动化:实用视角

构建人工智能代理,实现企业级软件开发自动化:实用视角

Randy Zhang 和 Shamin Aggarwal Agentic AI 是一款基于大型语言模型(LLMs)的软件应用,通过模拟类人推理和决策来自动化任务。它在自动化小型和简单脚本的软件开发方面显示出了显著的能力 [1]。AI 代理能否用于自动化企业级软件开发?在大型复杂的软件开发环境中,我们会遇到什么样的挑战? 企业级软件项目通常是旨在满足复杂业务需求的大规模软件开发计划。这

阅读更多
实践:使用 LangGraph 构建代理工作流(Langchain-academy 的主要学习内容) | 第 1 部分

实践:使用 LangGraph 构建代理工作流(Langchain-academy 的主要学习内容) | 第 1 部分

介绍 Langchain 最近推出了一门令人印象深刻的课程,专注于 LangGraph 及其在开发强大的代理和多代理工作流中的关键特性。 在本系列中,我们将探索课程中的基本见解,并创建利用代理工作流的应用程序。在第一部分中,我们将涵盖 LangGraph 的基本概

阅读更多
LazyGraphRAG:高效和有效 RAG 的新时代 | 作者:Ankush k Singal | 2024年11月 | Medium

LazyGraphRAG:高效和有效 RAG 的新时代 | 作者:Ankush k Singal | 2024年11月 | Medium

介绍 在人工智能领域,检索增强生成(RAG)已成为一种强大的技术,以增强大型语言模型(LLMs)的能力。RAG使LLMs能够访问和处理来自外部知识源的大量信息,从而提供更具信息性和综合性的响应。然而,传统的RAG方法在处理大型数据集时可能计算成本高且耗时。 为了解决这些限制,提出了一种称为LazyGraphRAG的新方法。这种创新技术在效率和有效性方面提供了显著的优势,使其成为广泛

阅读更多
面向真实世界应用的高级代理人工智能设计考虑因素

面向真实世界应用的高级代理人工智能设计考虑因素

从基于课堂的代理到语言链代理 随着人工智能(AI)系统的发展,代理人工智能的概念——即由模块化、特定任务的代理协作工作的AI系统——已成为可扩展和可适应AI解决方案的基石。本文探讨了代理人工智能背后的设计考虑,研究了代理、工具、记忆、状态和规划如何结合在一起创造智能工作流。我们将比较三种实现——CODE1、CODE2和CODE5——以揭示其中的实用性

阅读更多
用于医疗保健的 LangGraph:综合技术指南

用于医疗保健的 LangGraph:综合技术指南

构建生产就绪的医疗运营代理 LangGraph简介什么是 LangGraph? LangGraph 是一个 Python 库,旨在构建具有状

阅读更多
在 B2C 行业中利用大型语言模型 (LLM):在 B2C 行业中利用大型语言模型 (LLM):...

在 B2C 行业中利用大型语言模型 (LLM):在 B2C 行业中利用大型语言模型 (LLM):...

在金融服务、零售和电子商务等B2C行业快速发展的环境中,客户对个性化和即时响应的期望达到了前所未有的高度。随着人工智能技术的进步,尤其是大型语言模型(LLMs)的发展,企业在处理客户互动方面发生了剧烈变化。在银行和信用卡服务等行业,客户经常寻求有关产品、福利或交易的详细信息,因此采用基于LLM的自主代理提供了显著的优势。这些代理能够提供实时、智能的响应,转变客户参与方式,同时提高运营效率

阅读更多
利用 Gen AI(OpenAI API)构建智能测试自动化

利用 Gen AI(OpenAI API)构建智能测试自动化

我们都知道 UI 测试非常脆弱。它们可能因各种原因而失败,其中一个最大的问题是 UI 定位器的变化。很难想象我们如何能让它们足够智能,以理解定位器何时发生变化,并在测试中出现定位器问题之前防止测试运行。你没听错!现在是 2024 年,自动化测试工具已经取得了长足的进步。在与这些工具打交道近 18 年后,从 Mercury Winrunner 到 Playwright,我们现在可以利用

阅读更多
克服医疗领域的法学硕士挑战:生产发展实用策略

克服医疗领域的法学硕士挑战:生产发展实用策略

生成性人工智能 我遇到的最常见的LLM开发挑战、有效的缓解策略以及一个职业生涯中决定性的面试错误 引言 我一直是那种深入研究一个主题并专注到痴迷的人。当我从数据科学硕士毕业时,我的痴迷是计算机视觉;特别是将计算机视觉应用于神经科学或心理健康领域。我决心成为心理健康领域的“计算机视觉工程师”(不过“机器学习工程师”也可以),尽管我的导师们劝我拓宽视野,寻找更多机会。

阅读更多
LongRAG:让人工智能在信息海洋中捕捞更多鱼

LongRAG:让人工智能在信息海洋中捕捞更多鱼

在 我之前的文章 中,我介绍了RAG是否会因长上下文LLMs而变得过时。今天,让我们看看如何将长上下文LLMs应用于RAG场景。 在检索增强生成(RAG)领域,传统方法一直依赖于短检索单元,通常约为100个单词,这迫

阅读更多
在软件应用程序中使用 AutoGen 的实用指南

在软件应用程序中使用 AutoGen 的实用指南

更新:虽然这篇文章是在四个月前写的,但 AutoGen 自那时以来变化很大。对于我代码示例中可能过时的内容,我深感歉意。 如果您想了解 AutoGen,可以查看 文档、Colab 笔记本 和 [博客

阅读更多
使用 GPT Vision 和 Langchain 从图像生成结构化数据

使用 GPT Vision 和 Langchain 从图像生成结构化数据

在当今这个视觉数据丰富的世界中,从图像中提取有意义信息的能力变得越来越重要。Langchain是一个强大的框架,用于构建大型语言模型(LLMs)应用程序,提供了一套多功能的工具来应对这一挑战。在本文中,我们将探讨如何使用Langchain从图像中提取结构化信息,例如计算人数和列出主要物体。 在深入代码之前,让我们先了解一下任务的背景。想象一下你有一张场景的图像,比如城市街道。你的目标是

阅读更多