Type something to search...

Langgraph

LangGraph:调用代理的工具

LangGraph:调用代理的工具

本文假设读者对 LangGraph / 多代理设计有基本的了解。在此基础上,让我们尝试理解实现工具调用代理的基本原理。 对生成式 AI 感兴趣的人应该对函数调用/工具调用等概念有所了解。这个概念非常简单,模型可以借助一个或多个工具根据用户的提示生成推理。工具就是作为催化剂的函数,帮助模型提供所需的信息以便进行更好的推理。此外,工具可以是内置工具或自定义定义的工具。 在我寻找实现多代理

阅读更多
使用自定义工具构建和服务 RAG 代理:完整指南

使用自定义工具构建和服务 RAG 代理:完整指南

目标 本文的目标是演示如何使用 LangGraph 和 LangChain 创建一个大型语言模型(LLM)代理,该代理将在一组文档上执行检索增强生成(RAG)。此外,我们将探讨如何构建一个工具,以便进行 API 调用,从而使 LLM 能够从外部来源获取实时知识。最后,我们将使用 Flask API(FastAPI)在本地提供此代理,并使用本地 PostgreSQL 数据库服务器存

阅读更多
使用哪种人工智能代理框架?LangChain?AutoGen?9 种常用框架说明!

使用哪种人工智能代理框架?LangChain?AutoGen?9 种常用框架说明!

开发 AI 代理涉及选择合适的框架,以满足项目的需求,无论是基本任务、二次开发还是企业级集成。本指南探讨了多个框架——Coze、Dify、FastGPT、MetaGPT、AutoGen、Spring AI、Swarm、LangChain 和 LangGraph——以提供对它们的工作原理和使用案例的详细见解。 1. Coze Coze 是一个轻量级且用户友好的框架,旨在以尽可能少的

阅读更多
使用 LangGraph 构建 RAG 研究多重代理

使用 LangGraph 构建 RAG 研究多重代理

❓引言 — 天真的 RAG 与 代理 RAG 🧠 项目概述 📊 结果 🔚 结论在本文中,我们介绍了一个实用项目,使用 LangGraph 开发了一个 RAG 研究多代理 工具。该工具旨在解决需要 多个来源 和 迭代步骤 才能得出最终答案的 复杂问题。它采用 混合搜索 和 Cohere **重新排序步

阅读更多
如何开发具有自动互联网搜索功能的免费人工智能代理

如何开发具有自动互联网搜索功能的免费人工智能代理

使用 Groq 的免费 API 和 LangGraph 开发一个 AI 代理,以回答用户的问题并根据问题自动调用互联网搜索 如果您不是 Medium 会员,您可以通过此链接阅读完整故事。 生成性人工智能中的代理 AI 方法正在取得进展,并发现多个潜在应用。AI 代理就像数字助手,可以代表用户执行多项任务。它们可以理解用户的问题、整体目标,推理并决定选择最佳行动,并相互沟通

阅读更多
LangGraph 系统检查员:用于测试和验证 LangGraph 代理的人工智能代理

LangGraph 系统检查员:用于测试和验证 LangGraph 代理的人工智能代理

🔗 探索完整的系统检查器代码教程 — 深入代码,学习如何自己实现这个前沿的 AI 代理! 🤔 为什么您应该关注 AI 测试 想象一下,使用 AI 助

阅读更多
多模态人工智能助手:结合本地模型和云模型

多模态人工智能助手:结合本地模型和云模型

使用 LangGraph、mlx 和 Florence2 构建一个能够回答复杂图像问题的智能体,支持本地运行。 *在本文中,我们将结合 LangGraph 和多个专业模型,构建一个基础的智能体,能够回答有关图像的复杂问题,包括图像描述、边界框和 OCR。最初的想法是仅使用本地模型构建,但经过一些迭代后,我决定添加对基于云的模型(即 GPT4o-mini)的连接,以获得更可靠的

阅读更多
惊人进化!用Gemini 2.0与LangGraph构建您的多工具自主代理!

惊人进化!用Gemini 2.0与LangGraph构建您的多工具自主代理!

一个实用的教程,包含完整代码示例,用于构建和运行多工具代理 大型语言模型(LLMs)非常出色——它们可以记忆大量信息,回答常识性问题,编写代码,生成故事,甚至修正你的语法。然而,它们并非没有局限性。它们会幻觉,知识截止日期可能从几个月到几年不等,并且仅限于生成文本,无法与现实世界互动。这限制了它们的实用性,尤其是在需要实时数据、来源引用或超出文本生成功能的任务中。这

阅读更多
代理 RAG 系列:探索 LangGraph 高级工作流程

代理 RAG 系列:探索 LangGraph 高级工作流程

介绍 在上一篇文章中,我们介绍了Agentic RAG的概念,强调它如何通过集成自主代理能力来扩展传统的检索增强生成(RAG)框架。在本期中,我们深入探讨LangGraph,这是一个用于协调逻辑工作流程的创新框架。LangGraph使得创建具有复杂推理能力的多代理系统成为可能,是构建Agentic RAG架构的理想工具。 ![](https://wsrv.nl/?u

阅读更多
人工智能代理框架终极指南:CrewAI vs LangGraph vs PhiData vs Relevance AI

人工智能代理框架终极指南:CrewAI vs LangGraph vs PhiData vs Relevance AI

AI代理开发的领域正在快速演变,多个框架相继出现,帮助开发者和企业构建复杂的AI解决方案。在本综合指南中,我们将深入探讨四个领先的框架:CrewAI、LangGraph、PhiData和Relevance AI。无论你是开发者、企业领导还是AI爱好者,了解这些框架的优势和差异对于做出明智的决策至关重要。 AI代理框架的兴起 随着AI不断改变我们的工作方式,构建和部署AI代理的

阅读更多
构建生产就绪的人工智能助理后台服务(Python)--第 2 部分

构建生产就绪的人工智能助理后台服务(Python)--第 2 部分

— 使用 LangGraph 构建多代理 RAG 系统 + 用授权密钥头保护您的应用程序 *免责声明 — 本文内容仅代表我个人观点,不代表我当前或过去雇主的立场。* 在上一部分([第 1 部分](https://readmedium.com/build-production-ready-ai-assistant-backend-service-in-python-part-

阅读更多
构建一个能写入 Google 文档的研究助手(第 2 部分)

构建一个能写入 Google 文档的研究助手(第 2 部分)

可能对你的作业有所帮助的工具 ***本文是两部分系列的第二部分,我们使用 LangGraph 和 Tavily 构建一个简单的研究代理,该代理可以撰写和完善短文。为了跟踪它生成的计划、文章和评论,我们增加了以编程方式创建和编辑 Google Docs 的能力。在第一篇文章中,我们构建了代理。现在我们将构建文档连接。你可以在 [这里](https://github.com/rma

阅读更多
建立一个能写入 Google 文档的研究代理(第 1 部分)

建立一个能写入 Google 文档的研究代理(第 1 部分)

可能帮助您完成作业的工具 ***本文是两部分系列的第一部分,我们将使用 LangGraph 和 Tavily 构建一个简单的研究助手,该助手编写和完善短文。为了跟踪它生成的计划、文章和评论,我们添加了程序化创建和编辑 Google Docs 的功能。在本文中,我们将重点关注助手,将文档连接的内容留到第二篇文章。您可以在 [这里](https://github.com/rmart

阅读更多
解开复杂的人工智能任务:使用 Gemini 2.0、LangGraph 和 Grounded Responses 的多步骤代理

解开复杂的人工智能任务:使用 Gemini 2.0、LangGraph 和 Grounded Responses 的多步骤代理

如何构建不仅理解复杂请求而且能够执行必要步骤以满足这些请求的 AI? 本文探讨了一种强大的解决方案:由 Gemini 2.0 和 LangGraph 框架驱动的多步骤 AI 代理。这些代理协调复杂的工作流程,并通过基于实际数据的响应增强其推理能力,从 Google 搜索、BigQuery 和第三方 API 获取真实世界的数据。 今日的挑战 第一个重大突破是 LLM。想象一下一

阅读更多
利用 LangGraph 和代理优化工作流程效率:关键功能、用例和集成...

利用 LangGraph 和代理优化工作流程效率:关键功能、用例和集成...

在生成式 AI 和大型语言模型(LLMs)的背景下,agents 和 LangGraph 是增强 LLM 功能的工具和框架,使它们能够以更灵活和结构化的方式执行任务、做出决策或与复杂工作流程进行交互。以下是每个概念的详细说明及其应用示例。 什么是 LLM 中的代理? 代理是与 LLM 一起工作的自主程序或组件,能够根据提示和用户输入执行任务、做出决策或与环境互动

阅读更多
使用 LangGraph 框架以多代理方式实施复杂的 LLM 应用程序

使用 LangGraph 框架以多代理方式实施复杂的 LLM 应用程序

将LangGraph添加到您的GenAI相关技能库中。这项技能可以立即使您能够创建复杂的AI系统。当然,前提是您需要了解LangChain的使用方法。介绍 LangGraph 是一个强大的工具,旨在使用大型语言模型 (LLMs) 创建有状态的多参与者应用程序。通过扩展 LangChain 库的功能,LangGraph 使得多个链(或参与者)能够在各种计算步骤中以循环方式进

阅读更多
实践:使用 LangGraph 构建代理工作流(Langchain-academy 的主要学习内容) | 第 1 部分

实践:使用 LangGraph 构建代理工作流(Langchain-academy 的主要学习内容) | 第 1 部分

介绍 Langchain 最近推出了一门令人印象深刻的课程,专注于 LangGraph 及其在开发强大的代理和多代理工作流中的关键特性。 在本系列中,我们将探索课程中的基本见解,并创建利用代理工作流的应用程序。在第一部分中,我们将涵盖 LangGraph 的基本概

阅读更多
从 LangChain 到 LangGraph:让多模型药物机器人具有个性化和可教性

从 LangChain 到 LangGraph:让多模型药物机器人具有个性化和可教性

为人机协作聊天机器人添加记忆和学习能力 药物试验测试新药物在人类中的安全性、有效性和疗效。这些关键研究对于开发和批准拯救生命的疗法至关重要。虽然药物试验为无数患有严重疾病的患者带来了希望,但许多人仍然不知道自己是否符合条件或潜在的好处。一个用户友好的药物试验信息系统可以弥补这一差距。它应该包含一个具有权威信息的数据库和一个易于使用的前端,患者可以通过它在复杂的临床研究世界中导航

阅读更多
构建动态多代理工作流:利用 LangChain 和 LangGraph 实现人工智能协作

构建动态多代理工作流:利用 LangChain 和 LangGraph 实现人工智能协作

本文利用 LangChain 和 LangGraph 创建一个简单的多智能体系统。智能体协同工作以完成任务。第一个智能体生成一系列随机数字,第二个智能体将这些数字乘以 10。每个智能体使用 OpenAI 的 GPT-4o API 来执行这些任务。 本文遵循基于工作流的架构,智能体根据分配的任务进行交互。在这篇文章中,我们将逐步分析脚本的每个部分以及它如何为整体流程做出贡献。

阅读更多
利用 LangGraph 和 OpenAI 打造代理金融分析师

利用 LangGraph 和 OpenAI 打造代理金融分析师

在股票交易的世界中,投资者依赖各种工具和方法来做出明智的决策。其中一种方法是 基本面分析,它评估公司的财务健康状况和股票表现,以提供可操作的见解。随着 AI 和机器学习的进步,股票分析现在可以在很大程度上实现自动化。在这篇文章中,我们将探讨如何使用 LangChain、LangGraph 和 Yahoo Finance 创建一个 股票表现分析代理,利用实时股票数据和关键技

阅读更多
打造未来:使用 LangGraph 开发自己的语音助手

打造未来:使用 LangGraph 开发自己的语音助手

今天,语音助手已经发展成为智能系统中需要先进自然语言处理的基本组成部分。本文提供了使用 LangGraph 开发语音助手的技术指南,LangGraph 是一个旨在管理复杂代理系统的编排框架。在整个文本中,我们将探讨 LangGraph 如何实现多个节点的协调,从而创建高效且高度可扩展的流程。本指南面向希望利用 LangGraph 功能在 AI 环境中实施解决方案的开发者。 什么是 L

阅读更多
使用 LangGraph 和 Waii 进行复杂 SQL 连接

使用 LangGraph 和 Waii 进行复杂 SQL 连接

在快速发展的数据分析领域,通过自然语言与数据互动的能力变得愈发重要。会话式分析旨在使复杂的数据结构对没有专业技术技能的用户更易于访问。 LangGraph 是一个用于构建有状态的多代理应用程序的框架,使用语言模型。Waii 提供文本到 SQL 和文本到图表的功能,使与数据库和数据可视化的自然语言交互成为可能。 本文探讨了 Waii 的功能如何增强 LangGraph 应用于会话式分析

阅读更多
从零到英雄:使用 LangGraph 快速构建智能聊天机器人

从零到英雄:使用 LangGraph 快速构建智能聊天机器人

在这个全面的快速入门指南中,我们将使用 LangGraph 构建一个支持聊天机器人,它可以:通过搜索网络回答常见问题 在调用之间保持对话状态 将复杂查询路由到人工进行审查 使用自定义状态来控制其行为 回溯并探索替代对话路径我们将从一个基本的聊天机器人开始,逐步添加更复杂的功能,同时介绍关键的 LangGraph 概念。

阅读更多
如何使用 LangGraph 构建人工智能代理:分步指南

如何使用 LangGraph 构建人工智能代理:分步指南

介绍 在人工智能的世界中,检索增强生成(RAG)系统已成为处理简单查询和生成上下文相关响应的常用工具。然而,随着对更复杂的人工智能应用需求的增长,出现了超越这些检索能力的系统的需求。AI代理应运而生——这些自主实体能够执行复杂的多步骤任务,在交互中保持状态,并动态适应新信息。LangGraph,作为LangChain库的强大扩展,旨在帮助开发人员构建这些先进的AI代理,通过启

阅读更多
LangGraph Studio:您的第一个代理 IDE

LangGraph Studio:您的第一个代理 IDE

LangGraph Studio 是一个开创性的代理集成开发环境,用于生成和控制代理 AI 应用程序。这个 [IDE 是由 LangChain 引入的](https://bakingai.com/blog/langgraph-studio-ai-agen

阅读更多
LangGraph:高级多代理工作流的未来

LangGraph:高级多代理工作流的未来

人工智能的世界正在迅速发展,像 LangChain 和 LangGraph 这样的工具处于使开发者高效构建智能系统的前沿。如果你听说过 LangGraph,但不确定它是什么或如何充分利用它的潜力,这个指南适合你。 在这篇全面的文章中,我们将涵盖你需要了解的关于 LangGraph 的所有内容——从其核心概念到实际应用。无论你是初学者还是高级开发者,这个指南将帮助你理解为什么 LangGra

阅读更多

掌握 LangGraph:人工智能系统、RAG、代理和工具终极指南

您是否希望深入了解 LangGraph,这一 AI 技术的最新热词?无论您是开发者、学生还是技术爱好者,理解 LangGraph 及其相关概念,如 AI 助手、检索增强生成(RAG)、代理和工具,对于构建更智能、更互动的 AI 系统至关重要。在本文中,我们将分解 LangGraph 的基本内容,探索关键特性,并逐步指导您构建实用项目。 目录*什么是 LangGraph?

阅读更多
OpenAI Swarm vs LangChain LangGraph:多代理框架详解

OpenAI Swarm vs LangChain LangGraph:多代理框架详解

Ankush k Singal 介绍 人工智能的世界正在迅速发展,创建涉及多个代理的复杂工作流程的能力变得越来越重要。在这个领域中,OpenAI Swarm 和 LangChain LangGraph 是两个备受关注的框架。本文将深入探讨这两个框架,探索它们的功能、优势和理想用例,以帮助您决定哪个框架可能

阅读更多
我应该使用哪种人工智能代理框架?(CrewAI、Langgraph、Majestic-one 和 pure code)。

我应该使用哪种人工智能代理框架?(CrewAI、Langgraph、Majestic-one 和 pure code)。

随着大型语言模型的进步,人工智能模型现在能够对问题进行推理。起初,我们认为这些模型无法完成我们的工作,因为它们似乎只是搜索引擎的聊天机器人版本,我们能够用简单的推理来欺骗这些模型,但这变得越来越困难。这些大型语言模型现在能够逐步思考,并完成比简单回答问题更复杂的任务。 大型语言模型是通过预测前一个标记的下一个标记进行训练的。标记可以是单词、字符或称为子词的字符组。从这个结构,OpenA

阅读更多
Magentic-One、AutoGen、LangGraph、CrewAI 或 OpenAI Swarm:哪种多人工智能代理框架最好?

Magentic-One、AutoGen、LangGraph、CrewAI 或 OpenAI Swarm:哪种多人工智能代理框架最好?

流行的多智能体编排框架的优缺点 生成式人工智能中的多智能体话题正在升温,每个主要科技巨头都发布了一些相关框架。 但是,应该选择哪个多智能体框架呢?选择实在太多了!!随着OpenAI发布Swarm和微软的Magentic-One,这个领域变得非常拥挤。因此,为了消除任何疑虑,我将尝试解释每个框架的关键特性、优缺点,让您决定哪个最适合您。我们将讨论:AutoG

阅读更多
用于构建多代理系统的 LangGraph、Autogen 和 Crewai 比较研究

用于构建多代理系统的 LangGraph、Autogen 和 Crewai 比较研究

随着我们进入多智能体系统(MAS)的领域,了解专门为此目的设计的各种编程语言至关重要。在本文中,我们将通过比较 LangGraph、Autogen 和 Crewai —— 该领域的三大重要参与者,深入探讨 MAS 开发的世界。 介绍 多智能体系统(MAS)在各个行业中变得越来越重要。MAS是由多个智能体组成的系统,这些智能体相互之间以及与环境进行交互,以实现特定目标。在可用于构建M

阅读更多
利用 LangChain 和 LangGraph 进行多代理对冲基金模拟

利用 LangChain 和 LangGraph 进行多代理对冲基金模拟

多智能体对冲基金模拟与 LangChain 和 LangGraph 该项目演示了如何使用多智能体设置来模拟对冲基金的分析过程。它展示了一种实用的方法来构建一个系统,该系统利用 AI 智能体收集和分析金融数据,这种设置可以进一步扩展和定制。在这里,我将分解该项目,其中涉及一个投资组合经理和三个分析师智能体(基本面、技术面和情绪面),每个智能体在收集和处理股票数据方面被分配了特定角色。

阅读更多
在 LLM 代理框架之间进行选择

在 LLM 代理框架之间进行选择

定制代码代理与主要代理框架之间的权衡 代理正在迎来一个重要时刻。随着多个新框架和新的 投资 的涌入,现代 AI 代理正在克服 [不稳定的起源](https://arxiv.org/html/2405.

阅读更多
LangGraph、LangChain、LangFlow、LangSmith:使用哪一个以及为什么?

LangGraph、LangChain、LangFlow、LangSmith:使用哪一个以及为什么?

探索 LangGraph、LangChain、LangFlow 和 LangSmith 之间的关键区别,了解哪种框架最适合您的语言模型应用——从工作流构建到性能监控。 👨🏾‍💻 GitHub ⭐️ | 👔LinkedIn

阅读更多