Type something to search...

Knowledge

RAGFlow 一种开源检索增强生成(RAG)引擎

RAGFlow 一种开源检索增强生成(RAG)引擎

RAGFlow 是一个开源的检索增强生成 (RAG) 引擎,能够与大型语言模型 (LLMs) 集成,从复杂的数据格式中提供准确的、带有引用的答案。RAGFlow 开发者文档 提

阅读更多
简化的人工智能代理:人工智能代理如何利用领域知识回答问题

简化的人工智能代理:人工智能代理如何利用领域知识回答问题

揭秘企业AI代理如何利用领域知识定制回答客户问题,并严格限制答案在领域知识范围内。 背景 你是否曾想过,今天最先进平台上的尖端 AI 代理是如何运作的?例如,在上面的截图中,我向 wealthsimple.com 的 AI 代理询问利率问题,它提供了特定于 Wealthsimple 产品的答案,并将其限制在 Wealthsimple 产品范围内。它没有告诉我美国银行的现

阅读更多
掌握CrewAI秘籍 3:如何让你的AI代理获取知识,实现智能对话?

掌握CrewAI秘籍 3:如何让你的AI代理获取知识,实现智能对话?

知识 — CrewAI 在 CrewAI 中,“知识”是允许 AI 代理在执行任务时访问和利用外部信息源的系统。我们可以把它看作是为我们的代理提供了一个参考图书馆,以便在工作时咨询。文本来源:原始字符串、文本文件、pdf 等… 结构化数据:CSV、excel、json 等…上一章: 让我们创建一个新项目来使用“知识” (*openai >> gpt-4o

阅读更多
现代人工智能的核心:知识图谱和矢量数据库

现代人工智能的核心:知识图谱和矢量数据库

在快速发展的人工智能领域,检索增强生成(RAG)系统因其能够通过从外部数据库检索相关信息来增强传统人工智能模型而日益受到欢迎。这项技术的核心是两个关键工具——知识图谱和向量数据库——它们以根本不同的方式运作,但相辅相成,以解决各种问题。 为了理解它们的重要性,让我们来分析它们的概念、差异、优势,以及它们如何重塑各个行业。 1. 知识图谱:连接的基础

阅读更多
案例研究:将医生笔录转化为时态医疗记录知识图谱

案例研究:将医生笔录转化为时态医疗记录知识图谱

您是否有兴趣将医生/患者的医疗记录和记录转化为可以跨多个医疗历史、时间段和患者进行复杂查询的时间性知识图谱? 在本案例研究中,我们展示了如何将医疗记录转化为您可以依赖于 RAG 和分析目的的时间性知识图谱。我们展示了针对该系统的真实问答,以及您可以通过该系统实现的业务成果。据我们所知,这里步骤的组合是一种相对新颖的知识图谱实现。 使用的数据 出于数据隐私原因,我们使用了一个合成

阅读更多
如何使用 RAG 提高 LLM 成绩

如何使用 RAG 提高 LLM 成绩

初学者友好的介绍 w/ Python 代码 本文是关于在实践中使用大型语言模型的更大系列的一部分。在[上一篇文章](https://towardsdatascience.com/qlora-how-to-fine-tune-an-ll

阅读更多