Indexing
LangChain 与 LlamaIndex:检索增强生成(RAG)的综合比较
- Rifx.Online
- Generative AI , Data Science , Programming/Scripting
- 15 Dec, 2024
介绍 Retrieval-Augmented Generation (RAG) 结合了信息检索与生成模型,使其成为一个强大的技术,适用于问答、摘要及其他自然语言处理任务。要实现 RAG,目前最流行的两个框架是 LangChain 和 LlamaIndex。这两个框架旨在处理文档的摄取、拆分、索引以及将步骤链在一起,以实现无缝的 RAG 工作流程。但哪个框架更适合您
阅读更多LightRAG - GraphRAG 简单高效的竞争对手?
- Rifx.Online
- Generative AI , Data Science , Technology/Web
- 13 Nov, 2024
传统的 RAG 系统通过索引原始数据来工作。这些数据被简单地切分并存储在向量数据库中。每当用户发出查询时,它会查询存储的片段并 检索 相关片段。如果您希望了解 RAG 的基本原理,我已经在 [这里](https://proxy.rifx.online/https://readmedium.com/retrieval-augmented-generation-rag-a-quick-a
阅读更多Microsoft GraphRAG v0.4.0
- Rifx.Online
- Programming , Data Science , Machine Learning
- 13 Nov, 2024
微软最近发布了 GraphRAG 项目的 v0.4.0 版本,带来了几项重要更新。最显著的新增功能是增量索引特性和 DRIFT 图推理查询模块,这大大增强了系统的效率和功能。 此次更新的核心亮点包括: 1. 增量索引:显著提高大规模数据处理的效率,实现更快的信息更新。 2. DRIFT 图推理查询模块:引入先进的图推理技术,增强复杂查询处理能力。 此外,版本 0.4.
阅读更多使用 Llama 3 构建 AI 代理
- Rifx.Online
- Programming , Generative AI , Chatbots
- 10 Nov, 2024
构建具有 Llama 3 函数调用能力的 AI 代理的综合指南 引言 想象一下你想买一些东西。你访问一个电子商务网站,使用搜索选项找到你想要的东西。也许你有多个物品要购买,因此这个过程并不是很高效。现在考虑这个场景:打开一个应用程序,用简单的英语描述你想要的东西,然后按下回车。你不必担心搜索和价格比较,因为应用程序会自动为你处理这些事情。很酷,对吧?这正是我们将在本教
阅读更多