Type something to search...

Document

利用 Docling、Ollama、Phi-4 | ExtractThinker 构建企业内部文档智能堆栈

利用 Docling、Ollama、Phi-4 | ExtractThinker 构建企业内部文档智能堆栈

在这个大型语言模型(LLM)的新时代,银行和金融机构在某种程度上处于劣势,因为前沿模型由于其硬件要求几乎无法在本地使用。然而,银行数据的敏感性带来了显著的隐私问题,尤其是当这些模型仅作为云服务提供时。为了解决这些挑战,组织可以转向**本地或小型语言模型(SLM)**设置,以将数据保留在内部,避免敏感信息的潜在泄露。这种方法使您能够利用先进的LLM(本地或通过最少的外部调用),同时

阅读更多
文档智能的多代理革命:Sema4.ai 的

文档智能的多代理革命:Sema4.ai 的

本文由 Sunil Govindan 共同撰写,他对 AI 驱动的文档处理提供了见解和专业知识。Sema4.ai 文档智能多代理系统 自去年年底将文档智能(DI)作为 Sema4.ai 企业代理平台的一部分推出以来,我们看到企业对转变其以文档为中心的工作流程产生了极大的兴趣。从数小时到数秒。从手动

阅读更多
采用 Phi-3-Vision-128K 的人工智能 OCR:文档处理的未来

采用 Phi-3-Vision-128K 的人工智能 OCR:文档处理的未来

在快速发展的人工智能领域,多模态模型正在为视觉和文本数据的整合设定新标准。最新的突破之一是 Phi-3-Vision-128K-Instruct,这是一个最先进的开放多模态模型,推动了AI在处理图像和文本方面的能力边界。该模型专注于文档提取、光学字符识别(OCR)和一般图像理解,能够彻底改变我们处理PDF、图表、表格以及其他结构化或半结构化文档的信息方式。 让我们深入探

阅读更多