Type something to search...
Qwen QwQ-32B-Preview

Qwen QwQ-32B-Preview
70% OFF

  • 32K Context
  • 0.12/M Input Tokens
  • 0.18/M Output Tokens
模型已不可用

介绍

QwQ-32B-Preview 是由 Qwen 团队开发的实验研究模型,旨在提升 AI 推理能力。作为预览版本,它展示了有前景的分析能力,但也存在几个重要的局限性:

  1. 语言混合和代码切换:该模型可能会意外混合语言或在语言之间切换,从而影响响应的清晰度。
  2. 递归推理循环:该模型可能会进入循环推理模式,导致响应冗长而没有结论性答案。
  3. 安全和伦理考虑:该模型需要增强的安全措施,以确保可靠和安全的性能,用户在使用时应谨慎。
  4. 性能和基准限制:该模型在数学和编码方面表现出色,但在其他领域(如常识推理和细微语言理解)仍有改进空间。

规格

  • 类型:因果语言模型
  • 训练阶段:预训练与后训练
  • 架构:带有 RoPE、SwiGLU、RMSNorm 和 Attention QKV 偏置的 transformers
  • 参数数量:32.5B
  • 参数数量(非嵌入):31.0B
  • 层数:64
  • 注意力头数量(GQA):Q 有 40 个,KV 有 8 个
  • 上下文长度:完整的 32,768 个标记

有关更多详细信息,请参阅我们的 博客。您还可以查看 Qwen2.5 的 GitHub文档

要求

Qwen2.5 的代码已经包含在最新的 Hugging Face transformers 中,我们建议您使用最新版本的 transformers

使用 transformers<4.37.0,您将遇到以下错误:

KeyError: 'qwen2'

快速开始

这里提供了一个使用 apply_chat_template 的代码片段,向您展示如何加载分词器和模型以及如何生成内容。

from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/QwQ-32B-Preview"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r in strawberry."
messages = [
    {"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

引用

如果您觉得我们的工作有帮助,请随意引用我们。

@misc{qwq-32b-preview,
    title = {QwQ: Reflect Deeply on the Boundaries of the Unknown},
    url = {https://qwenlm.github.io/blog/qwq-32b-preview/},
    author = {Qwen Team},
    month = {November},
    year = {2024}
}
@article{qwen2,
      title={Qwen2 Technical Report}, 
      author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
      journal={arXiv preprint arXiv:2407.10671},
      year={2024}
}

Related Posts

Qwen2 7B 是一个基于变换器的模型,在语言理解、多语言能力、编码、数学和推理方面表现出色。 它具有 SwiGLU 激活、注意力 QKV 偏置和组查询注意力。它在大量数据上进行了预训练,并进行了监督微调和直接偏好优化。 有关更多详细信息,请参见这篇 博客文章 和 [GitHub 仓库](https://git ...

Qwen 2 7B Instruct
Qwen
32K context $0.054/M input tokens $0.054/M output tokens
FREE

Qwen2 7B 是一个基于变换器的模型,在语言理解、多语言能力、编码、数学和推理方面表现出色。 它具有 SwiGLU 激活、注意力 QKV 偏置和组查询注意力。它在大量数据上进行了预训练,并进行了监督微调和直接偏好优化。 有关更多详细信息,请参见这篇 博客文章 和 [GitHub 仓库](https://git ...

Qwen 2 7B Instruct (free)
Qwen
32K context $0 input tokens $0 output tokens

Qwen2 VL 72B 是来自 Qwen 团队的多模态 LLM,具有以下关键增强功能:SoTA 对各种分辨率和比例图像的理解:Qwen2-VL 在视觉理解基准测试中实现了最先进的性能,包括 MathVista、DocVQA、RealWorldQA、MTVQA 等。理解超过 20 分钟的视频:Qwen2-VL 能够理解超过 20 分钟的视频,以进行高质量的视频问答、对话、内容创作...

Qwen2-VL 72B Instruct
Qwen
32K context $0.4/M input tokens $0.4/M output tokens $0.578/K image tokens

Qwen2 VL 7B 是来自 Qwen 团队的多模态 LLM,具有以下关键增强功能:对各种分辨率和比例的图像的最先进理解:Qwen2-VL 在视觉理解基准测试中取得了最先进的表现,包括 MathVista、DocVQA、RealWorldQA、MTVQA 等。理解超过 20 分钟的视频:Qwen2-VL 能够理解超过 20 分钟的视频,以实现高质量的视频问答、对话、内容创作等。...

Qwen2-VL 7B Instruct
Qwen
32K context $0.1/M input tokens $0.1/M output tokens $0.144/K image tokens

Qwen2.5 72B 是 Qwen 大型语言模型的最新系列。Qwen2.5 在 Qwen2 的基础上带来了以下改进:知识显著增加,并在编码和数学方面大幅提升了能力,这得益于我们在这些领域的专业专家模型。在遵循指令、生成长文本(超过 8K tokens)、理解结构化数据(例如,表格)以及生成结构化输出(特别是 JSON)方面有显著改进。对系统提示的多样性更具韧性,增强了角色扮演的...

Qwen2.5 72B Instruct
Qwen
128K context $0.35/M input tokens $0.4/M output tokens

Qwen2.5 7B 是 Qwen 大型语言模型的最新系列。Qwen2.5 在 Qwen2 的基础上带来了以下改进:知识显著增加,并在编码和数学方面的能力大幅提升,这得益于我们在这些领域的专业专家模型。在遵循指令、生成长文本(超过 8K tokens)、理解结构化数据(例如,表格)以及生成结构化输出(尤其是 JSON)方面有显著改进。对系统提示的多样性更具韧性,增强了角色扮演的实...

Qwen2.5 7B Instruct
Qwen
128K context $0.27/M input tokens $0.27/M output tokens